
Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Reordering Triple Patterns of SPARQL Queries
using Ant Colony Optimization

Elem GÜZEL KALAYCI1 Tahir Emre KALAYCI2

1Computer Engineering Department
Izmir University of Economics

2Computer Engineering Department
Manisa Celal Bayar University

International Conference on Soft Computing (MENDEL’12),
2012

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Outline

Optimizing SPARQL Queries using Ant Colony Optimization
SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Experimental Results
Experimental Setup
Results

Conclusions and Future Work

References

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

What are we doing?

I We proposed an Ant Colony Optimization (ACO) approach
for optimizing SPARQL queries:

I SPARQL Basic Graph Pattern (i.e. optimizing order of the
triple patterns) is optimized by using ACO

I It is a real time optimization without requiring any prior
knowledge

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

SPARQL Query Optimization

I SPARQL (SPARQL Protocol and RDF Query Language) is a
RDF query language and protocol

I Reordering triple patterns is a significant part of low-level
SPARQL query optimization.

I The purpose of reordering triple patterns is to find fastest
(optimum - better) query execution plan

I The plan that returns the result set with minimum execution
time compared to other execution plans.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

SPARQL Query Optimization - Example

I Basic Graph Pattern of a SPARQL query which queries
neighbours of Turkey and also queries import commodities,
industry branches and import partners of these neighbours; is
listed at a.

I Executing the query in a takes 762 ms.

I The reordered triple patterns (b) query takes 163 ms.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Ant Colony Optimization

I Ant Colony Optimization (ACO) is a paradigm for designing
meta-heuristic algorithms for combinatorial optimization
problems

I It is inspired from the foraging behaviour of ant colonies

Figure source : http://en.wikipedia.org/wiki/Ant colony optimization algorithms

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Ant Colony Optimization

I The original ant colony optimization algorithm, Ant System
(AS) is used for solving the problem.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Abstraction

I We abstract the Basic
Graph Pattern as a
complete graph.

I Each node represents a
triple pattern and each
edge represents estimated
join cost of connected
nodes.

I This graph is input of Ant
System, which tries to find
optimum triple pattern
order.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Calculation of Costs

I Join cost of triple patterns is required by the ACO.

I It is based on selectivity
(triple pattern cardinality/ontology triple count) of triple
patterns.

I Calculation of costs (i.e. weights) of complete graph consists
of two steps:

1. Selectivity estimation of triple patterns.
2. Cost calculation of join process.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Selectivity estimation of triple patterns

I Two techniques for selectivity estimation of triple patterns are
used:

1. Variable Counting for Selectivity Estimation: Based on ranking
components of triple patterns as
sel(Subject) < sel(Object) < sel(Predicate) and classifying
them as bound or unbound.

2. Graph Statistics Handler: GSH provides the most accurate
estimations, but it does not support estimation for triple
patterns that has more than one bound component.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Cost Calculation of Join Process

I Two different weight finding (i.e. cost calculation) approaches
have been implemented and experimented:

1. Variable Counting for Cost Calculation: Based on ranking join
types, e.g., Subject-Subject, Subject-Object joins.

2. Modified Variable Counting (VC-M) for Cost Calculation: VC
is modified with the aim of meeting the requirements of chain
and chain-star queries. This modification consists of increasing
ranking of Object-Subject joins by doubling its rank.

I To be able to calculate costs for edges, techniques that
discussed above are combined.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Implementation: GSH and VC

I Selectivity of triple pattern which has only one bound
component is estimated with GSH.

I In other cases VC is used for selectivity estimation.

I After selectivity estimation process, for cost calculation of join
operation VC is used.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Implementation:GSH for Selectivity Estimation and VC-M
for Cost Calculation

I Selectivity of triple patterns is estimated by using GSH technique.

I If triple pattern has more than one bound component, each bound
component selectivity is calculated with GSH and product of these
selectivities is returned as selectivity of triple pattern.

I For example triple pattern TP1 (c:TU o:border ?tuBorder) has two
bound component.

I To calculate estimated selectivity of this triple pattern;
I selectivity of subject sel(S1) and predicate sel(P1) - bound

components - are obtained from GSH.
I Then selectivity of TP1 is calculated as

sel(TP1) = sel(S1) ∗ sel(P1).

I Afterwards VC-M is applied for cost calculation, to find the weights

of the edges.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Implementation: Ant System

I After estimating the selectivity of triple patterns and
calculating costs, the cost matrix is composed from obtained
values and fed on to AS.

I At the start, ants are put on randomly chosen nodes.

I Ants decide for the next node using transition formula (eq. 1).

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Implementation: Ant System

Transition formula

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i

[τil ]α[ηil ]β
if j ∈ Nk

i (1)

Pheromone deposition formula

τij ← τij +
m∑

k=1

4τkij ∀(i , j) ∈ L (2)

Value of deposited pheromone formula

4τkij =
{
1/C k ,if edge(i ,j) belongs to T k ;
0, otherwise;

(3)

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

SPARQL Query Optimization
Ant Colony Optimization
Selectivity Estimation and Cost Calculation
Implementation

Implementation: Ant System

I During the algorithm run, the pheromone trails of all edges
are updated:

I after every ant have constructed its tour (local update)
I at the end of the every iteration (global update) when all ants

are constructed their tour.

I This update mechanism is done in two steps:
I First, pheromone values on all edges are decreased by

pheromone evaporation rate (0 < ρ ≤ 1) based on τij ← ρ× τij
formula

I Second, every ant deposits pheromone using formula 2 to the
edges it has visited.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Experimental Setup
Results

Experimental Setup

I All experiments are conducted using Java programming
language

I Apache Jena framework with ARQ engine is used for queries

I All experimented queries use target ontologies that are
extracted from CIA The World Factbook Web page.

I There are two ontologies that are stored in memory with total
triple count of 95812.

I Queries have different triple pattern counts: 4, 6, 8, 10, 12
and 14.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Experimental Setup
Results

Experimental Setup

I There are 4 different execution types:
I Normal execution (NE) without any optimization
I Algorithm proposed by Stocker et al. (2008) which uses

Variable Counting estimation method (STO-VC)
I Reordered execution which is an optimization included in Jena

(RE)
I AS Execution with variable counting (AS-VC) and AS

execution which uses VC-M method (AS-VC-M) which are
developed for this study

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Experimental Setup
Results

Experimental Setup - Parameters

I Parameters for AS algorithm are chosen by a preliminary
parameter analysis which is performed by running algorithm
for a fixed query for different values of parameters.

I Every query was run 10 times for every different execution
types and average of timings are calculated and used for
comparison.

Parameter Value
graph size triple pattern count

population size 50

iteration 100

α 2

β 1

evaporation rate (ρ) 0.5

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Experimental Setup
Results

Results

I All values in tables are in terms of milliseconds.

I These values include optimization, execution and population
(retrieving data from the ontology) time except for NE.
Values for NE include execution and population time.

I Executing some queries that contain less than 4 triple
patterns takes less time than optimizing it.

I Importance of the proposed method can be seen in situations
where optimized query can be saved and used later for several
times.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Experimental Setup
Results

Results

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Conclusions

I Proposed approach
I Optimizes SPARQL triple patterns order using ant colony

optimization for better execution
I Does not require any prior knowledge
I Reduces execution time considerably for the majority of the

queries as shown in the experiments.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

Future Work

I Improving heuristics - selectivity estimation and cost
calculation - to optimize all the queries without requiring any
prior graph information.

I Experimenting this method for different benchmark queries
and different ontologies

I Development of different optimization techniques for the
problem

I Integration of local search techniques to ACO and employing
better parameter tuning techniques

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

I JENA - http://incubator.apache.org/jena/

I Java - http://www.oracle.com/tr/technologies/java/

I CIA Factbook

I ARQ-2.6.0

I Abdel Kader, R. and van Keulen, M. Overview of query
optimization in xml database systems. Technical Report
TR-CTI, EEMCS, University of Twente, Enschede, 2007.

I Berners-Lee, T., Hendler, J., and Lassila, O. The semantic
web. Sci. Am., 284(5):34–43, 2001.

I Dorigo, M. and Stützle, T. Ant Colony Optimization. MIT
Press, Cambridge, MA, 2004.

I Harris, S. and Seaborne, A. SPARQL 1.1 Query Language -
W3C Working Draft 05 Jan. 2012. 2012.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO

http://incubator.apache.org/jena/
http://www.oracle.com/tr/technologies/java/
https://www.cia.gov/library/publications/the-world-factbook/index.html
http://sourceforge.net/projects/jena/files/ARQ/ARQ-2.6.0/


Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

I Hartig, O. and Heese, R. The sparql query graph model for
query optimization. In Proc. of the 4th European Conf. on
The Semantic Web: Research and Applications, ESWC’07,
pages 564–578, 2007.

I Hogenboom, A., Milea, V., Frasincar, F., and Kaymak, U.
Rcq-ga: Rdf chain query optimization using genetic
algorithms. In Proc. of the 10th Int. Conf. on EC-Web, pages
181–192, 2009.

I Hogenboom, F., Hogenboom, A., van Gelder, R., Milea, V.,
Frasincar, F., and Kaymak, U. Qmap: An RDF-based
queryable world map. In 3rd Int. KMO Conf., pages 99–110,
2008.

I Ioannidis, Y. E. Query optimization. ACM Comput. Surv.,
28(1):121–123, 1996.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

I Maduko, A., Anyanwu, K., Sheth, A., and Schliekelman, P.
Estimating the cardinality of rdf graph patterns. In Proc. of
the 16th Int. Conf. on World Wide Web, pages 1233–1234.
ACM, 2007.

I Maniezzo V, Gambardella L.M., D. L. F. New Optimization
Techniques in Engineering, chapter Ant Colony Optimization,
pages 101–117. Springer-Verlag, 2004.

I Neumann, T. and Weikum, G. Rdf-3x: a risc-style engine for
rdf. Proc. VLDB Endow., 1(1):647–659, 2008.

I Ozsu, M. T. and Blakeley, J. A. Query processing in
object-oriented database systems. In Modern Database
Systems, pages 146– 174. ACM Press and Addison-Wesley,
1995.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO



Optimizing SPARQL Queries using Ant Colony Optimization
Experimental Results

Conclusions and Future Work
References

I Ruckhaus, E., Ruiz, E., and Vidal, M. Query evaluation and
optimization in the semantic web. Theory Pract. Log.
Program., 8(3):393–409, 2008.

I Shironoshita, E. P., Ryan, M. T., and Kabuka, M. R.
Cardinality estimation for the optimization of queries on
ontologies. SIGMOD Rec., 36(2):13–18, 2007.

I Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and
Reynolds, D. Sparql basic graph pattern optimization using
selectivity estimation. In Proc. of the 17th Int. Conf. on
WWW, pages 595–604. ACM, 2008.

I Stuckenschmidt, H., Vdovjak, R., Broekstra, J., and Houben,
G. Towards distributed processing of rdf path queries. Int. J.
Web Eng. Technol., 2(2/3):207–230, 2005.

Elem GÜZEL KALAYCI, Tahir Emre KALAYCI Reordering Triple Patterns of SPARQL Queries using ACO


	Optimizing SPARQL Queries using Ant Colony Optimization
	SPARQL Query Optimization
	Ant Colony Optimization
	Selectivity Estimation and Cost Calculation
	Implementation

	Experimental Results
	Experimental Setup
	Results

	Conclusions and Future Work
	References

